Mgmdenia's Blog

Blog de Mercedes González Mas

Radiofrecuecias y Microondas

Las microondas y las radiofrecuencias son radiaciones electomagnéticas que pertenecen a la categoria de no ionizantes. Son emitidas por aparatos eléctricos, electónicos, los utilizados en comunicaciones militares, navegación, emisiones de TV, radio AM-FM, radares, etc.

 

 

Radiofrecuencias

El término Radiofrecuencia (abreviado RF), se aplica a la porción menos energética del espectro electromagnético en el que se pueden generar ondas electromagnéticas aplicando corriente alterna a una antena.

La Radiofrecuencia se localiza en el espectro de la radiación electromagnética entre 10 kHz (longitud de onda de 3 km) y 300 GHz (longitud de onda de 1 mm).
La radiofrecuencia se puede dividir en las siguientes bandas del espectro en función de su frecuencia: Ultra-alta, Muy Alta, Onda Corta, Onda Media, Onda Larga y Muy Baja Frecuencia.

En este sentido, se puede hablar desde frecuencias extremadamente bajas hasta frecuencias extremadamente altas UHF (ultra-high frequency), pasando por otros tipos de frecuencias en el medio.

Usos y aplicaciones:

  • Ondas de radio

La radiofonía de amplitud modulada (AM), por ejemplo, transmite en media frecuencia. Las ondas AM (amplitud modulada) son un tipo de onda de modulación no lineal que consiste en hacer variar la amplitud de una señal de alta frecuencia, denominada onda portadora, de tal forma que cambie de acuerdo con las variaciones de nivel de la señal moduladora, que es la información que se va a transmitir.
La radiofonía de frecuencia modulada (FM), en cambio, realiza su transmisión en muy alta frecuencia. Las ondas FM (frecuencia modulada) son una modulación angular que transmite información a través de una onda portadora variando su frecuencia, en contraste con las ondas de AM que varían la amplitud y mantienen la frecuencia constante.

Las diferentes frecuencias determinan el alcance de las ondas y la calidad de la transmisión, entre otras cuestiones. Las radios AM, en este sentido, pueden llegar con sus señales a mayores distancias en comparación con las radios FM.

Sistemas de radio AM y FM.

Aunque se emplea la palabra radio, las transmisiones de televisión, radio, radar y telefonía móvil están incluidas en esta clase de emisiones de radiofrecuencia.

Otros usos son audio, vídeo, radionavegación, servicios de emergencia y transmisión de datos por radio digital; tanto en el ámbito civil como militar.

También son usadas por los radioaficionados.

  • Radioastronomía

La radioastronomía es el estudio de objetos en el espacio, tales como estrellas y galaxias, que emiten naturalmente ondas de radio.
Muchos de los objetos astronómicos emiten en radiofrecuencia, así que la radioastronomía ha dado muchas sorpresas al permitirnos detectar y representar lo que era invisible para los telescopios ópticos

Las ondas de radio tienen una longitud de onda mayor que la de la luz visible.

En la radioastronomía, para poder recibir buenas señales, se deben utilizar grandes antenas, o grupos de antenas más pequeñas trabajando en paralelo. La mayoría de los radiotelescopios utilizan una antena parabólica para amplificar las ondas, y así obtener una buena lectura de estas. Esto permite a los astrónomos observar el espectro de radio de una región del cielo.

 

  • Radar

El radar es un sistema que usa ondas de radiofrecuencia para medir distancias, altitudes y velocidades de objetos tanto estáticos o móviles. Se utiliza para detectar aviones y aeronaves, barcos, coches y vehículos motorizados. También para el estudio de formaciones meteorológicas y del propio terreno.
Su funcionamiento se basa en emitir un impulso de radio, que se refleja en el objetivo y se recibe típicamente en la misma posición del emisor. A partir de este “eco” se puede extraer gran cantidad de información.


Una de las aplicaciones  más importantes es el radar Doppler, es un dispositivo electrónico que emite una onda de radio con una frecuencia constante. La onda reflejada por el objeto en movimiento llegara con distinta frecuencia que la emitida y esta diferencia permite calcular la velocidad del vehículo aplicando el efecto Doppler.
Entre sus muchas aplicaciónes se incluyen la meteorología, el control del tráfico aéreo y terrestre y gran variedad de usos militares.

  • Resonancia Magnética Nuclear. RMN

La resonancia magnética nuclear estudia los núcleos atómicos al alinearlos a un campo magnético constante para posteriormente perturbar este alineamiento con el uso de un campo magnético alterno.
Se coloca al paciente dentro de un electroimán muy potente. Se le envía una onda de radiofrecuencia que entra en resonancia con los protones del hidrógeno, que están presente en todos los tejidos del cuerpo humano. Se interrumpe la onda y los protones vuelven a su estado natural emitiendo una señal que es recibida y utilizada para reconstruir una imagen del interior del paciente.


La resonancia magnética crea imágenes detalladas de los órganos, tejidos blandos, huesos y prácticamente toda la estructura interna del paciente.

 

  • Medicina.

Es importante conocer que, en los últimos años, la radiofrecuencia ha ampliado sus “servicios” y ahora, además de seguir empleándose dentro del ámbito de las telecomunicaciones, ha pasado a ocupar un papel fundamental en el campo de la medicina.

La radiofrecuencia se ha usado en tratamientos médicos durante los últimos 75 años, generalmente para cirugía mínimamente invasiva, utilizando ablación por radiofrecuencia o crioablación.

La ablación es la destrucción completa de un órgano o de un tejido.

También estan los tratamientos en los que se usa la radiofrecuencia en contra la apnea durante el sueño o para arritmias cardiacas.
Otro uso es la diatermia, que es una técnica que utiliza el calor producido por la radiofrecuencia para tratamientos quirúrgicos, de tal forma que produce la coagulación de tejidos e impide que el tejido sangre tras la incisión quirúrgica. Además de cauterizar vasos sanguíneos para prevenir el sangrado excesivo, también se puede utilizar el calor producido por la diatermia para destruir tumores, verrugas y tejidos infectados. Esta técnica es particularmente valiosa en neurocirugía y cirugía del ojo. Los equipos de diatermia normalmente operan en la frecuencia de onda corta de radio o energía de microondas.

  • Tratamientos de Belleza.

La radiofrecuencia, en niveles de energía que no producen ablación, se usa también como tratamiento cosmético para tensar la piel, reducir la grasa (lipolisis) o promover la cicatrización. Es una técnica usada en los centros de belleza y medicina estética.
El uso de la radiofrecuencia para tensar la piel tiene su base en que se produce energía que calienta el tejido, lo que estimula la producción de colágeno y elastina subcutánea, consiguiendo que se reduzcan las arrugas de la piel. En el rostro, la radiofrecuencia facial es una alternativa a un lifting quirúrgico y otras cirugías cosméticas.

Microondas

Las microondas son onas electromagnèticas que se localizan entre 300 MHz (longitud de onda de 1 m) y 300 GHz (longitud de onda de 1 mm).
El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las de UHF (ultra-high frequency – frecuencia ultra alta). Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas.

Usos y aplicaciones:

  • Horno Microondas

Una de las aplicaciones más conocidas de las microondas es el horno de microondas, que usa un magnetrón para producir ondas a una frecuencia de aproximadamente 2,45 GHz. Estas ondas hacen vibrar o rotar las moléculas de agua, lo cual genera calor. Debido a que la mayor parte de los alimentos contienen un importante porcentaje de agua, pueden ser fácilmente cocinados de esta manera.

 

  • Telecomunicaciones

En telecomunicaciones, las microondas son usadas en radiodifusión, ya que estas pasan fácilmente a través de la atmósfera con menos interferencia que otras longitudes de onda mayores. También hay más ancho de banda en el espectro de microondas que en el resto del espectro de radio. Usualmente, las microondas son usadas en programas informativos de televisión para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada.

La televisión por cable y el acceso a Internet vía cable coaxial usan algunas de las más bajas frecuencias de microondas. Algunas redes de telefonía celular también usan bajas frecuencias de microondas.

  • El máser

Un máser es un amplificador de microondas por la emisión estimulada de radiación, un amplificador similar al láser pero que opera en la región de microondas del espectro electromagnético y sirve para recibir señales muy débiles. La palabra deriva del acrónimo en inglés MASER, por Microwave Amplification by Stimulated Emission of Radiation.

El máser y el láser están basados en el fenómeno de emisión estimulada de radiación, estudiado por Albert Einstein en 1916: Cuando una molécula se halla en un estado excitado, de energía E2 mayor que la de su estado fundamental, E1, puede producirse la transición espontánea del nivel excitado al fundamental, emitiendo un fotón cuya frecuencia corresponde al salto energético ΔE = E 2 − E1 entre los dos niveles.
Pero si un fotón de esa misma frecuencia incide sobre una molécula en el estado excitado, se puede inducir o estimular la transición al fundamental, resultando dos fotones de la misma frecuencia, el incidente más el emitido. Cuando el fenómeno ocurre dentro de una cavidad de paredes reflectoras (cavidad resonante), se desencadena una cascada de emisiones estimuladas y se amplifica la radiación inicial, siempre que dentro de la cavidad se mantenga de alguna forma la población de moléculas excitadas. Un orificio en la cavidad resonante deja salir parte de la radiación (microondas en el máser o luz en el láser) en forma de un haz estable, unidireccional y muy monocromático, es decir de una frecuencia bien determinada.

Con un máser que amplifica señales sin agregar mucho ruido, se podrían crear detectores que funcionen en la astronomía y la medicina.

Hasta ahora esta tecnología es usada en misiones espaciales distantes como la de la sonda Voyager. Y es que la microondas atraviesan los materiales que la luz no puede penetrar, como las nubes y la piel.

Otra de las aplicaciones podría ser la de crear escáneres hipersensibles, gracias a la amplificación que logra el máser. Así se podría detectar un tumor cancerígeno con mayor facilidad y precisión.

  • Armas

En la industria armamentística, se han desarrollado prototipos de armas que utilicen la tecnología de microondas para la incapacitación momentánea o permanente de diferentes enemigos en un radio limitado.

El rifle táctico de asalto Phasr (Personnel Halting and Stimulation Response) es un prototipo de arma no letalcreado por el Departamento de Defensa de los Estados Unidos, La finalidad de esta arma es generar y enviar un pulso de microondas con diferente grado de intensidad y potencia, hacia uno o múltiples objetivos en un área concreta, el efecto del sistema térmico hace que se caliente la capa externa de la piel utilizando las microondas para repeler a los individuos de forma segura.

  • Cámaras radiofrecuencia

Las cámaras de vigilancia inalámbricas se utilizan en instalaciones en las que no puede utilizarse cableado. Su instalación es muy sencilla, solo requieren un transmisor que va acoplado a la cámara y un receptor que se conecta directamente a la televisión, el monitor, un videograbador o un ordenador, de forma que puedan visualizarse las imágenes y montar un CCTV (Circuito Cerrado de Televisión).

  • Detector de radiofrecuencia

El Detector de RF Digital funciona con tecnología de escaneo de radio frecuencias para detectar y localizar camaras ocultas, microfonos espias, telefonos celulares y otros dispositivos que operen con radio frecuencia (hasta 6 Ghz). Esta unidad fue diseñada para que pueda ser utilizada por cualquier persona sin conocimientos en contramedidas electronicas logrando resultados sorprendentes.

 

Anuncios

7 enero 2018 Posted by | ....BIII-Óptica, ....BIV-Electromagnet, 2n Batxillerat-Física | , , , | Deja un comentario

Infrarrojos

Dentro del espectro electromagnético, la radiación infrarroja se encuentra comprendida entre el espectro de luz visible y las microondas. Tiene longitudes de onda mayores o más largas que el rojo.

Los rayos infrarrojos, por lo tanto, constituyen una clase de radiación electromagnética con una longitud de onda que resulta superior a la longitud de onda de la luz visible (por lo tanto, tiene una frecuencia menor), aunque inferior a la longitud de onda de las microondas (la frecuencia de los rayos infrarrojos es superior a las microondas).

 

Los rayos infrarrojos son clasificados, de acuerdo a su longitud de onda, de este modo
• infrarrojo cercano se refiere a la parte del espectro infrarojo que ese encuentra más próximo a la luz visible (de 780 nm a 1100 nm)
• infrarrojo medio (de 1,1 µm a 15  µm)
infrarrojo lejano se refiere a la sección más cercana a la región microondas. (de 15 µm a 100 µm)

La fuente primaria de la radiación infrarroja es el calor o radiación térmica. La radiación infrarroja es emitida por cualquier cuerpo cuya temperatura sea mayor que cero absoluto. (0 Kelvin, es decir, −273,15 grados Celsius). Incluso los objetos que consideramos muy frios emiten en el infrarrojo. Cuando un objeto no es suficientemente caliente para irradiar ondas en el espectro visible, emite la mayoria de su energia como ondas infrarrojas. En el caso de los seres vivos, la mayor parte de la radioación emitida es infrarroja.

La radiación infrarroja es debida a las vibraciones de los electrones, átomos y moléculas, y se propaga con la velocidad de la luz, calentando los objetos que encuentra a su paso, ya que origina que los electrones, átomos y moléculas que constituyen los objetos, comiencen a vibrar.
Cuanto mayor es la energía de las vibraciones que origina la radiación infrarroja, más corta es la longitud de onda de la radiación emitida. Las ondas de infrarrojo se trasmiten, al igual que cualquier otra radiación electromagnética, en línea recta, y, de la misma manera que sucede en el visible y en el ultravioleta, la radiación calorífica del infrarrojo sólo puede detectarse por algún instrumento sometido directamente a su acción, las cámaras de infrarrojos

La imagen muestra la fotografia de un perro tomada en la banda infrarroja. Las áreas de colores naranja y blanco son las zonas más calientes, en tanto que las azules son las mas frias. Esta información no la podríamos obtener a partir de la luz visible.

La siguiente imagen la he tomado en el Museo de las Ciencias Principe Felipe de Valencia. Recomiendo su visita. En la foto aparezco en el centro junto a mis dos hijas.

 

Aplicaciones:

  • Sentimos los efectos de la radiación infrarroja cada día. El calor de la luz del sol, del fuego, de un radiador o estufa provienen del infrarrojo. Aunque no podemos ver esta radiació, los nervios de nuestra piel pueden sentirla como calor.

 

  • Visión en la oscuridad. Los detectores de infrarrojos pueden ver objetos que no es posible ver con luz visible. Hay animales como las viboras que pueden detectar animales de sangre caliente por los infrarrojos que irradian, incluso en la oscuridad.

 

  • Lamparas de infrarrojos. Este tipo de lámpara es, en todo, similar a las lámparas corrientes utilizadas en el alumbrado. Para dirigir convenientemente la radiación infrarroja, se recubre parte de la superfieie interior del bulbo con un material que refleja los rayos infrarrojos y que ayuda a enfocar en una dirección la totalidad de la radiación emitida. El filamento de una lámpara de rayos infrarrojos está a una temperatura inferior a la del filamento de una lámpara ordinaria (2.400° C comparados con unos 3.000° C) y la intensidad máxima de la gama de radiación que emite corresponde a unas 15.000 unidades Angstróm. Los objetos sometidos a una lámpara de infrarrojos de calientan muy rapidamente.

 

  • Utilizamos rayos infrarrojos cuando usamos un mando a distancia de un televisor. Los  mandos a distancia de uso doméstico emiten una señal infrarroja.
  • El termómetro de infrarrojos de precision cón con laser es ligero, compacto y fácil de usar. Simplemente presionar el botón para visualizar en la pantalla la temperatura del objeto medido.
  • Para poder detectar fugas de agua y calefacción de una manera mucho más rápida y sin tener que acometer la rotura de ninguna instalación.

 

  • Los militares también hacen uso de los rayos infrarrojos a través de determinados sistemas cuando están llevando alguna operación. Así pueden, por ejemplo, detectar a un blanco a larga distancia aún en condiciones de escasa o nula visibilidad.

 

  • Las lámparas de rayos infrarrojos tienen aplicaciones industrialaes. Se utilizan para acometer lo que es el secado y esmaltado de pinturas u barnices.

 

  • Los rayos infrarrojos se utilizan también como fuente calorífica en la destilación de líquidos volátiles o muy inflamables, evitándose, de este modo, los riesgos que se producirían si estos últimos, por ejemplo, se calentaran a la llama. En este sentido, ha de tenerse en cuenta que la parte incandescente de una lámpara de rayos infrarrojos está totalmente encerrada en el bulbo.

 

  • Dentro del campo de la gastronomía, para poder acometer lo que es asado de ciertos platos de una manera más rápida y consiguiendo un resultado más homogéneo. En las conocidas parrillas de rayos infrarrojos, se consiguen asados más rápidos que en las parrillas ordinarias. La radiación infrarroja penetra, además, en el interior de la pieza de carne, con lo que resulta un asado más uniforme.

 

 

 

13 diciembre 2017 Posted by | ....BIII-Óptica, 2n Batxillerat-Física | , , | Deja un comentario